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Popular Summary 

This paper addresses the problem that in many cases, observations cannot 
provide complete fields of the measured quantities, because they yield data only 
along a single cross-section through the examined fields. One such example is 
in-situ airplane measurements of cloud properties along the airplane’s flight 
path. Other examples are vertically-pointing ground-based instruments that 
measure cloud properties only above their fixed location: It is true that as the 
wind blows clouds over these ground-based instruments, one can use the time 
series of measurements to reconstruct cloud structure along the line of wind 
direction-but cloud properties outside this line remain unknown. The paper 
describes a new Fourier-adjustment technique that allows existing fractal 
models to build realistic surroundings to the measured cross-sections. This new 
approach allows more representative calculations of cloud radiative processes 
and may be used in other areas as well. 
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Abstract 

This paper addresses the problem that in many cases, observations cannot provide 

complete fields of the measured quantities, because they yield data only along a single 

cross-section through the examined fields. The paper describes a new Fourier-adjustment 

technique that allows existing fractal models to build realistic surroundings to the 

measured cross-sections. This new approach allows more representative calculations of 

cloud radiative processes and may be used in other areas as well. 
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Introduction 

In many cases, observations cannot yield the full spatial distribution of 

geophysical parameters, because they provide data only along a single cross-section of 

the complete field. One such example is in-situ airplane measurements of cloud water 

content along the airplane’s flight path. Other examples are vertically-pointing ground- 

based instruments that measure cloud properties only above their fixed location- for 

example, Millimeter Wavelength Cloud Radars and Microwave Radiometers, which 

measure the altitude-dependent cloud water content and the vertically integrated cloud 

water path, respectively. It is true that as the wind blows clouds over these ground-based 

instruments, one can use the time series of measurements to reconstruct cloud structure 

along the line of wind direction-but cloud properties outside this line remain unknown. 

Unfortunately, knowledge of a single cross-section is not sufficient for some types 

of studies, such as studying radiative processes in heterogeneous clouds. So far, 

researchers have had two options for dealing with this situation. The fsrst possibility is to 

assume no variability along the missing dimension and to perform 2D radiative 

calculations instead of 3D ones (e.g., Hignett and Taylor 1996, Zuidema and Evans 1998, 

Los and Duynkerke 2000). The inherent limitation of this approach is, of course, that 2D 

calculations cannot capture the full complexity of 3D processes (e.g., Barker 1996). The 

second possibility is to use observations for calculating the measured field’s statistical 

parameters, then to use a stochastic model to create complete fields with the desired 

parameters, and finally, to perform 3D radiative calculations for the created fields (e.g., 

Barker and Davies 1992, Davis et al. 1997, Iwabuchi and Hayasaka 2002). The main 

2 



limitation of this approach is that although the statistical parameters reproduced by 

stochastic models strongly influence the cloud fields’ radiative parameters, they do not 

determine them completely. 

This paper offers a third choice to researchers: It proposes a Fourier-adjustment 

technique that allows stochastic models not only to reproduce the observations in a 

statistical sense, but also to exactly fit the available observations. As a result, the new 

approach can provide realistic surroundings to the actual measurements, thus extending 

the observations’ dimensionality. Because the stochastic extension process creates fractal 

structures, the procedure may be termed “fractal extrapolation”. 

In the area of cloud radiative transfer, the main advantage of fitting stochastic 

models to the measurements is that-at least near the observed cross-sections-this 

allows the models to reproduce even the cloud properties not considered explicitly in the 

model. As a result, the new approach generates cloud structures that will allow more 

representative radiative transfer calculations than either conventional stochastic models 

or stand-alone observations would. 

If additional information is available for areas outside the measured line, the 

approach can also use this data to provide an integrated, holistic view of clouds. For 

example, the new method can combine the ground-based information in x and z directions 

with satellite information about variations in the y direction and thus provide an 

integrated 3D view of clouds. 

This paper first describes the proposed approach for a relatively simple case, and 

then it discusses how this basic method can be extended to handle increasingly complex 

situations. 
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Description of Basic Methodology 

To present the basic concept of the new approach, let us assume that on an 

overcast day, we measure the W(t)  time series of vertically integrated water path values 

using a vertically-pointing, ground-based Microwave Radiometer (MWR). Adopting the 

widely used frozen turbulence assumption and knowing the wind speed and direction, we 

can convert the time series of measurements into a 1D cross-section of the cloud field, 

W(x). Our goal is then to extend the data into the missing cross-wind direction, thus 

obtaining a realistic W(x,y) field. 

The proposed approach works for any stochastic model that is based on the 

following three-step procedure: 

Step 1: Generate a suitable set of random Fourier coefficients. 

Step 2: Do an inverse Fourier transform to get an initial 2D field. 

Step 3: Apply a transformation T to get the final W(x,y) field. 

In Step 1, most current fractal models generate the initial Fourier coefficients as a 

complex Gaussian white noise (0 mean, unit standard deviation, and uniform phase- 

distribution between 0 and 2n), and the coefficients are multiplied by an appropriate 

factor to achieve the desired scaling properties. As for Step 3, the proposed methodology 

works with any T transformations used in current stochastic models, such as addition and 

multiplication in Fractional Brownian Motion (e.g., Barker and Davies 1992), an extra 

exponentiation in Frank Evans’s model (Evans 1993), and a final low-pass filtering in 

fractional integration models (Schertzer and Lovejoy, 1987). 
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The proposed approach considers that the Fourier transform decomposes the 

actual data into a sum of sine waves in both the 1D and 2D situations: 

where N, and N y  are the number of data points along the x and y axes, respectively 

(0 s x 5 N,-l, and 0 s y s Ny-1). k and I are the wavenumbers along these axes, and the 

complex Fourier coefficients Hk and Hk.1  describe the amplitude and phase of each sine 

wave. For simplicity, we assume that observations are available along the y = 0 line. 

Because the generated fields will be periodic (W(x,O) = W(xJY-l)) ,  we will obtain 

surroundings on both sides of the observed line. For visual clarity, we may then use a 

cyclic shifting of the generated field to place the observed line into the center. 

Since the measured 1D data sequence W(x) represents a cross-section of the 2D 

field W(x,y), we know that the 1D waves we obtain from the Fourier analysis of W(x) 

really arise from the combination of the 2D waves that describe the W(x,y) field. Thus the 

key task of the new method is to generate a set of 2D waves that, when combined, form 

the 1D waves we obtained from the 1D data series. This requirement can be formulated 

precisely as follows: The comparison of Eqs. (la) and (lb) reveals that in order to get 

W(x) = W(x,O), we need to satisfy the equation 

N,-' 

To satisfy this equation, we need to adjust the initial 2D waves generated randomly in 

Step 1. For the adjustment, we first need to calculate the "desired" 1D waves (Hk values) 
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by applying to our 1D data series the inverse of transformation T and then performing a 

forward Fourier transform. Then we can adjust the initial, random 2D waves 

(Ht: values) according to the equation 

E Hinit H k  
k.1 k.1 Ny-1 

1 
H r  = 

- EkVlH;' 
Ny 1-0 

(3) 

In this equation, &l is a complex number used to ensure that the adjusted 2D waves 

combine with an appropriate effectiveness along the line of measurement (i.e., that they 

tend to cancel out or strengthen each other to an appropriate degree). The values are 

calculated in four steps. First, we fit a smooth function Gk on the IHJ values around k (for 

example in the form Gk = a kb, using the empirical a and b values that ensure a best fit). 

Second, we calculate the Ck = - lHkl  values to estimate how effectively the real W(x,y )  
Gk 

field's 2D waves combine along the line of measurements: whether they tend to 

strengthen or cancel out each other. Third, we calculate the &(y) values that describe 

how effectively our randomly generated 2D waves with wavenumber k combine along 

the lines at each y value: 

In this equation, the numerator is the amplitude of the 1D wave that results from the 

combination of 2D waves in our case, and the denominator is the mean value of 

amplitudes that could be expected from the combination of randomly chosen 2D waves. 
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In the denominator, N, is the number of test arrangements that are used the calculate the 

mean expected amplitude (usually less than 10 is sufficient), and CkSr, is a random 

complex number with unit length. (C,,, randomly changes the phase of 2D sine waves so 

that in each arrangement, they combine with a different effectiveness.) Fourth, we select 

for each k value a corresponding y, such that C, = Dk(yk), and then we get the Ek,, values as 

Let us note that if, because of the random arrangement of our initial 2D waves, no 

suitable y, value is found for which C, = D&), we need to generate another set of 

random H:: values for this particular k and try the adjustment procedure again. 

Because the adjustment of H:: in Eq. (3) means a multiplication by a random 

factor, it does not spoil the statistical properties of the initial 2D waves, and so it does not 

change the statistics of the final W(x,y) field. An initial test result from this procedure is 

shown in Figure 1. 

Discussion of Possible Extensions to More Complex Situations 

Broken Cloud Fields 

In overcast situations, the method described above generates W(x,y) fields that can 

be used in 3D radiative transfer studies much the same way as the W(x,y) fields derived 

from satellite images have been used in the past (e.g., Barker and Liu, 1995, Liou and 

Rao 1996, O’Hirok and Gauthier 1998). In the case of broken clouds, however, a small 

complication arises: Transformation T in Step 3 of the basic stochastic model procedure 

involves a cut that sets all negative W values to zero in the cloud-free areas (e.g., Barker 
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and Davies 1992). This implies that the inverse transformation T-' in Step 1 (needed to 

get the desired Hk coefficients) must replace the zero values in the observations by 

stochastically generated negative values, for example using the midpoint displacement 

method. A sample result for broken clouds is shown in Fig. 2. 

Extrapolation of 2 0  Data Into a 3 0  Field 

The proposed approach can also be extended to generate 3D cloud structures 

based on measured vertical (x-z) cross-sections of cloud properties. For homogeneous 

turbulence, the 2D to 3D extrapolation is directly analogous to the 1D to 2D procedure 

described above, and it needs only straightforward changes to accommodate the 

additional dimension. (For example, Hk,[ should be replaced by Hk,[,".) Real clouds, 

however, often display systematic altitude-dependent features, and in such cases it may 

be more appropriate to adopt a layer-by-layer approach in which the 1D data series for a 

given altitude is used to generate a 2D field for that altitude. In this approach we need to 

pay special attention to preserving throughout the scene the oblique and vertical 

correlations that are present in the measured (x-z) plane. To achieve this, we should not 

generate brand-new random 2D sine waves (Ht: values) for each altitude, but instead we 

should only adjust the 2D sine waves from one level to the next by an appropriate 

amount. 

Anisotropic Cloud Fields 

The proposed approach can also be extended to situations when we have 

additional information about variability outside the measured cross-section. For example, 
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a whole-sky imager or a satellite image may give statistical information on the clouds’ 

horizontal anisotropy -e.g., whether cloud streets occur. Any observed anisotropy can be 

reproduced if the initial HF: coefficients are multiplied by an appropriate anisotropy- 

functionflk,l), because the subsequent adjustment by Eq. (3) does not change the field’s 

anisotropy ( H r  will be just as anisotropic as HF:.) While future studies are needed to 

determine the most appropriate function for describing horizontal cloud anisotropy, the 

following general form may be widely applicable: 

where g describes how the magnitude of anisotropy changes with scale (e.g., small-scale 

turbulence is fairly isotropic even in cloud streets), and h describes the angular shape of 

anisotropy. 

Integration of Observed Vertical Cross-sections With Images Depicting Horizontal 

Variability 

The proposed approach may reproduce the main features of actual clouds even 

outside an observed vertical cross-section, if the data can be co-located with images that 

depict the cloud field’s horizontal structure. This can be the case if, for example, a 

vertically pointing lidar and an imager are mounted on the same airplane, or if a satellite 

passes over the location of our ground-based instruments. In such cases the model could 

combine the (x-z) cross-section with (x-y) images to give us an integrated, 3D view of 

clouds. For this, Step 1 should not generate the initial 2D sine waves (Ht: values) 

randomly; instead, it should take them from a 2D Fourier analysis of the available image. 
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Let us note, however, that since the satellite information will usually disagree slightly 

with the (x-z) measurements, the model-generated fields will not match the observed (x-y) 

fields exactly; but they are expected to reproduce the dominant features of the actual 

clouds, for example, the location of gaps and turrets. 
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Figure 1. (a) A cloud field generated by the stochastic model of Frank Evans (Evans 

1993). The black line indicates the position of hypothetical cloud observations W(x). (b) 

A sample cloud field generated by the proposed method that fits the hypothetical 

observations. (c) and (d) The two fields’ cross-sections along the specified line. (The two 

cross-sections match exactly, and the two fields have very similar statistical properties, 

namely histogram, anisotropy, scaling, and intermittency.) 
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Figure 2. Same as Figure 1, but for broken clouds. 
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